SYNTHESIS OF 2-METHYLENETRICYCLO[4.3.2.0^{1,5}]UNDECAN-3-ONES INVOLVING A SPIRO CYCLOPROPANE RING

Kiyomi KAKIUCHI, * Toshihiro TADAKI, Yoshito TOBE, and Yoshinobu ODAIRA

Department of Applied Fine Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

Biologically active 2-methylenetricyclo[$4.3.2.0^{1,5}$] undecan-3-ones involving a spiro cyclopropane ring related to quadrone have been synthesized.

As part of study on the unique transformations of [m.n.2]propellanes, we have already reported the synthesis of various 7-alkylidene-5-oxadispiro[2.0.4.4]-dodecan-6-ones (1) containing a spiro cyclopropane ring by using the skeletal rearrangement of [4.4.2]propella- δ -lactone (2) and their interesting biological activities. Furthermore, we have recently synthesized biologically active

descarboxyquadrone $(3)^{2,3}$ and its binor derivative 4^{2} related to quadrone $(5)^{4}$ by utilizing the novel acid-catalyzed rearrangement of [4.3.2]propellanone (6) to the quadrone framework. From the viewpoint of exploitation of a new type of biologically active substances, we wish to describe here the synthesis of 2-methylenetricyclo[4.3.2.0^{1,5}]undecan-3-ones (9) and (9)0 having a spiro cyclopropane ring by application of the rearrangement to [4.3.2]propellanone derivatives 7 and 8, and their biological activities.

At first, we prepared the key intermediate 11 from 7^{6} for the synthesis of 9 as described before. Condensation of the enolate of 11 [1.1 equiv. LDA, THF, -78 °C] with gaseous formaldehyde at -20 °C followed by hydrogenation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{6} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{6} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{6} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{6} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{6} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{6} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{7} Condensation of 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{7} [Pd/C, AcOEt, rt] are 12^{7} [Pd/C, AcOEt, rt] and acid-catalyzed dehydration [p-toluenesulfonic acid, 12^{7} [Pd/C, AcOEt, rt] are 12^{7} [Pd/C, AcOEt, rt]

In a similar fashion, the key intermediate of 16^{7} for the synthesis of 10 was easily derived from $8^{6,7}$: i) acid-catalyzed rearrangement of 8 [concd HC1, Et₂O, reflux] followed by dehydration of the crude 13 [SOC1₂, Py, CH₂C1₂, rt, 79% overall yield]; ii) reduction of 14^{7} with tributyltin hydride [2,2'-azobis-isobutyronitrile, cyclohexane, reflux, 93%]; iii) allylic oxidation of 15^{7} with Collins reagent [CrO₃-Py₂, CH₂Cl₂, rt, 74%]. At the final stage, hydroxymethylation of 16 and subsequent hydrogenation of 17^{7} as described for 11 followed by dehydration [i) MeSO₂Cl, Py, rt; ii) 1,8-Diazabicyclo[5.4.0]undec-7-ene, C₆H₆, rt] afforded 10^{7} in 50% overall yield.

The bioassay of 9 and 10 was undertaken against tumor cells of mice in vitro and the results are summarized in Table 1 together with those of quadrone (5). As shown in Table 1, the cytotoxicity of 9 and 10 has been observed at almost the

Chemistry Letters, 1985

same level as the antibiotic 5. Interestingly, 9 has exhibited antimicrobial activity against *Stphylococcus aureus*, *Candida albicans*, and *Trichoyhyton foetus* (minimum inhibitory concentration: MIC, $2.5-5 \mu g/ml$) and the activity of $10 \mu g/ml$ was somewhat lower than that of $9 \mu g/ml$ or above), while quadrone $9 \mu g/ml$ or below. 8) These datails of the assay will be reported shortly.

Table 1.	Antitumor Activity of Quadrone ((5)
	and Related Compounds 9 and 10	

			VVV VVV	
Test cell		IC ₅₀ (ng/r	n1)	
	.5.	9	10.	
P388	190	173	416	
L1210	650	106	487	
3LL	390	80	357	
LY	>1000	263	>1000	

We would like to thank Dr. N. Ida and Mr. H. Koike of Basic Laboratories, Toray Industries, Inc. for the screening.

References

- 1) K. Kakiuchi, T. Yonei, Y. Tobe, and Y. Odaira, Bull. Chem. Soc. Jpn., <u>54</u>, 2770 (1981).
- 2) K. Kakiuchi, T. Nakao, M. Takeda, Y. Tobe, and Y. Odaira, Tetrahedron Lett., 25, 557 (1984).
- 3) A. B. Smith, III, B. A. Wexler, and J. Slade, Tetrahedron Lett., <u>23</u>, 1631 (1982).
- 4) R. L. Ranieri and G. J. Calton, Tetrahedron Lett., 1978, 499.
- K. Kakiuchi, T. Tsugaru, M. Takeda, I. Wakaki, Y. Tobe, and Y. Odaira,
 J. Org. Chem., 49, 659 (1985).

- 6) The propellanones $\frac{7}{10}$ and $\frac{8}{10}$ were prepared by photocycloaddition of allene to bicyclo[4.3.0]undec-1(6)-en-2-one [CH₂Cl₂, -78 °C] followed by cyclopropanation [i) LAH, Et₂O, rt; ii) Me₃SiCl, Et₃N, THF, rt; iii) Et₂Zn, CH₂I₂, hexane, rt; iv) 5% HCl, MeOH, rt; v) CrO₃-Py₂, CH₂Cl₂, rt] in 26% and 53% overall yields. The stereochemistry of the two allene photoadducts were elucidated on the basis of LIS 1 H NMR study.
- 7) All new compounds gave satisfactory spectral and analytical data. Selected data are as follows:
 - 9: ¹H NMR (CC1₄) δ 0.4-0.8 (m, 4H), 1.2-2.1 (m, 10H), 2.2-2.5 (m, 2H), 4.91 (s, 1H), 5.71 (s, 1H); ¹³C NMR (CDC1₃) δ 207.4 (s), 153.2 (s), 112.3 (t), 53.4 (s), 52.4 (d), 47.1 (d), 45.7 (t), 39.8 (t), 34.3 (t), 31.3 (t), 23.1 (s), 20.0 (t), 17.9 (t), 6.8 (t).
 - 10: 1 H NMR (CC1 $_{4}$) δ 0.2-0.8 (m, 4H), 1.2-2.4 (m, 12H), 4.64 (s, 1H), 5.68 (s, 1H); 13 C NMR (CDC1 $_{3}$) δ 207.8 (s), 150.8 (s), 112.8 (t), 53.2 (d), 53.1 (s), 39.8 (t), 39.7 (t), 37.5 (d), 33.2 (t), 32.9 (t), 24.9 (s), 19.1 (t), 16.1 (t), 7.2 (t).
- 8) G. J. Calton, R. L. Ranieri, and M. A. Espensade, J. Antibiot., 31, 38 (1978).

(Received July 22, 1985)